Three coins are tossed once. Find the probability of getting atleast $2$ heads.
When three coins are tossed once, the sample space is given by $S =\{ HHH , HHT , HTH , THH , HTT , THT , TTH , TTT \}$
$\therefore$ Accordingly, $n ( S )=8$
It is known that the probability of an event $A$ is given by
$P ( A )=\frac{\text { Number of outcomes favourable to } A }{\text { Total number of possible outcomes }}=\frac{n( A )}{n( S )}$
Let $D$ be the event of the occurrence of at least $2$ heads.
Accordingly, $D =\{ HHH ,\, HHT \,, HTH \,, THH \}$
$\therefore P(D)=\frac{n(D)}{n(S)}=\frac{4}{8}=\frac{1}{2}$
Two dice are thrown. The probability that the sum of numbers appearing is more than $10$, is
One card is drawn from a well shuffled deck of $52$ cards. If each outcome is equally likely, calculate the probability that the card will be not a black card.
A bag contains $9$ discs of which $4$ are red, $3$ are blue and $2$ are yellow. The discs are similar in shape and size. A disc is drawn at random from the bag. Calculate the probability that it will be not blue,
The probability that an ordinary or a non-leap year has $53$ sunday, is
Three coins are tossed once. Find the probability of getting no tails.